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5- and v-function resummation of infinite series: general case 

Alfred Actor 
Deparlment of Physics, The Pennsylvania State University, Fogelsville, PA 18051, USA 
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Abstract. Given a spectrum of positive numbers [ A , r , )  from which a <-function Z ( s ) =  
Z,,, Ai,' can be consirucied, ihe  reorganiraiion oi series of ihe type 

F(s, O = X  A;, ' / (A,, , t )  

into power series in  I is examined in detail using the method of {-funclion resummarion. 
For summand functions J'!A,,,l) having power series expansions in A,J with infinite radius 
of convergence, and u,hich satisy other conditions of a rather general nature, we find that 
F ( ,  1) c m  be reorganized to 

F(+ I) = 1 anth,, +I q t " ~  In t + R(s,  1 )  

whereR(i ,  l)vanishesexponentiallyasl-O.Thenumberso,,,b,,,c,,,d,, canallbecomputed 
in terms o f  the  <-function Z ( s ) .  R(s,  I )  is difficult to evaluate, but important general 
features of this function can be determined. The power series expansion of F(.r, 1 )  can be 
regarded as a generalization ol-the heat kernel expansion (for which J(A, , , l )=exp( -A, , , l )  
and .c = 0 )  to non-zero complex variable .c (which is useful) and to many other summand 
functions/lA,,,t). Remarkably, the <-function resummation method can be applied as easily 
to divergent series F(r, I )  as i t  can l o  convergent ones. The method is therefore both a 
rearrangement procedure for convergent series, and a summation prescription for divergent 
series. 

1. Introduction 

The problem addressed in this paper is that of expanding functions defined by a series 

F ( s ,  f ) = E  A , ' f ( A J )  (1.11 
"1 

in powers of the real parameter 1. Here s is a complex variable, and , f ( z )  is a 
iransccnucntai i u r i~ iwi i  W ~ I U Y B  p u w e i ~  L ~ I I C Y  e x p a ~ u n  . ~~ ~.~ 1 ~ ..-, C ~ ~ ~ .  .-:... ... L... - ... :.. :.~. 

has infinite radius of convergence. For much of o u r  discussion the power series (1.2) 
will be assumed t o  have alternating sign as indicated-i.e. C(k)  does not alternate in 
sign. Another assumption made  aboui Cjz j  (now regarded a s  a Function in ihe compiex 
plane) is that C ( z )  is regular for Re z >  -W. Moreover, the points z = -n, n = I ,  2, 
3 , .  . . are assumed to be zeros of C(z) .  T h e  spectrum {A, , , }  might be regarded as 
belonging to  a real, positive operator. We prefer, however, not to link the real, positive 
spectrum {A,,,} t o  an operator, but rather to think of this spectrum in a less specific 

,711 J I * L  n,n< "".,A,'%* i l L , , " ,  I , ' > E m  C n  h ,no, In0 D..Lli-Li^" 1 ._I 
","_l-*t*," ,", I",, .+I~I,I I".1.," &, 1 1 1 1  1 v 1  .""""""E LI" 
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way, as any sequence growing without limit, having no infinite degeneracies, and 
generally suitable for constructing a {-function 

Z (  s) 3 C A;' R e s > B  (1 .3)  
m 

where Re s = B is the abscissa of absolute convergence of Z(s) .  
The general solution of the problem just posed will be shown to have the form 

F(s, O = X  (s, f)+{s,  fl,+{s, flex (1.4) 

where each of the three functions on the right has a highly distinctive character. The 
function 

1 ( s ,  1)' I: ( - ) k C ( k ) I " k + " Z ( s - d - b )  (1.5) 
P = 0  

is a power series involving constant powers of 1. The function {s, f)p represents another 
power series i n  1, having s-dependent powers. Also, for special values of s, this function 
contains In f terms. We shall compute {s, I), explicitly in terms of Z ( s ) .  The remaining 
function {s, f}ex has no power or logarithmic dependence on 1 ;  it is a function of f 
beyond power series form, akin to exp(-l/f)  in that it vanishes with f faster than any 
power of f. This property of {s, is very important, for it is extremely difficult to 
compute {s, f}ex exactly. Equation (1.4) is understood to be exact, but one cannot, as 
a rule, do  more than estimate {s, flex. Equation (1.4) is nevertheless useful because, 
for small f, one can discard { s, f }ez  relative to the power series, leaving the quite general 
asymptotic series formula 

F(s, f 1 - 1  (s, t )+ {s ,  Op f + O +  (1.6) 

in which everything on the right is known in terms of Z ( s ) ,  the central function in 
these considerations. If one can calculate Z(s),  say in terms, of simpler {-functions 
whose properties are well understood, then equation (1.6) is a quite explicit as well 
as general formula giving F(s, 1 )  as an asymptotic series in f. Beyond this, one can 
hope that equation (1.4) may eventually be used in a more precise fashion by learning 
more about the small function {s, t } e x .  This will be a subject for future research. 

Equations (l.l)-(l.6) were discussed in simplified form (with A,, = m", m = 
I ,  2 , 3 , .  . . and oi > 0) in [ I ] .  That paper draws upon and augments work in a number 
of earlier papers [2-71 on the use of 6-function regularization to rearrange infinite 
series of the form Xy m?'*f(tm") into power series in f. Nowhere, to the author's 
knowledge, has the extension of these methods from the integers {m) to an arbitrary 
spectrum been given. The main purpose of the present article is to work through the 
details of this extension. 

Equation (1.6) reproduces well-known results on the power series expansion of the 
heat kernel X,,, exp(-Ami), and generalizes these to the non-zero complex variable s, 
and to summand functions f(A.J) different from the exponential f(A,,,l) =exp(-A,,f). 
There is a practical value in introducing the complex variable s, beyond mere general- 
ization. Analyticity considerations in s reveal a ciose reiationship between the two 
power functions X (s, I )  and {s, f},, in equations (l.4), (1.6). Our derivation of equation 
(1.4) involves an 'unjustified' series commutation which generates an additional a priori 
unknown function, divided in equation (1.4) into the two terms {s, f } p  and Is, f f e Y .  This 
separation is unique and unambiguous: {s, I},, is a power series in f, while {s, f}ex 
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vanishes exponentially with 1. The power function {s, t}, is constrained by the following 
consideration. F ( s ,  1 )  in equation (1.1) is the i-function series (1.3) with an additional 
factorf(A,t) inserted into the summand. The  condition that F(s, t > 0) does not have 
the poles of Z(s)-these having been prevented from forming by the disordering effect 
of the  summand factor f(A,t)-can only be  satisfied if the  power function {s, t},, 
cancels the poles in s found in the other power function Z(s ,  t ) .  ( I n  equation (1.5) 
these s-poles are in the coefficients Z(s - a k  - b) . )  The exponentially small function 
is, ij,, cannot participate in ihe poie canceliation because it has the wrong t dependence. 
Consequently, the meromorphic structure of I: (s, t )  uniquely determines the meromor- 
phic structure of {s, i}p, and this function itself up to an  entire function of .s. There is 
a systematic procedure [4, 71 for determinig the correct entire function, which simul- 
taneously provides a contour integral formula for the exponentially small function 
is, t>cx (see the appendix). The latter function is an  entire function of s-related, of 
Coiiise, to the 0 t h  teims 2 ( s ,  i )  and is, i}, in  equaiioii (iA),  but at a Far deepei level 
than I: and i )p are related to one  another. 

( i j  Rearrangement of convergent series. When the series (1.1) converges in some 
half-plane R e s >  C, equations (1,1)-(1.6) describe a series rearrangement problem in 
which I-function regularization o f the  coefficients in equation (1.5) is the distinguishing 
L C L I L U I V  "L L l l b  II.LLII"". 1Jy"c'u "1 ,111a C Y L C 6 " 1 J  is LLLG ,,La, nrlllrl y L " Y 1 c L L 1  ,aLL 

section 4). 
(ii) Summation of divergent series. The series (1.1) may also diverge, perhaps very 
strongly. Then one has to reinterpret the series commutation procedure, and yet the 
same steps as before again yield unambiguous results. {-function resummation has 
now become a summation prescription for assigning a unique power series representa- 
!ion p!us exponentia!!y sma!! correction to the erigina! divergent series. This procedure 
does not seem to be part of the standard methodology for divergent series (see [SI). 

Equations (l.1)-(1.6) apply to a broad range of series of interest for theoretical 
physics and for applied mathematics. The spectrum {A,} could be the energy spectrum 
of a quantum system, for example. Or, in quantum field theory, this could be the 
spectrum of the Lagrangian kinetic operator 0 = g"V,V,. on a curved spacetime of 
interest. We mentinn that C-function resummation can be used at the local level. To 
make the idea clear, let $,H(x) = ( x I m )  be the eigenfunctions A$, , (x )=A, ,$ , , (x )  of 
operator A. Replacing the series (1.1) by F(s, t ( x , y ) = ( x ( A - ' f ( A t ) ( y )  and Z ( s j  by 
Z ( s I x ,  y )  = (x /A- ' l y ) ,  one  readily obtains the local version o f  equation (1.4). This will 
be discussed separately and  in detail [15]. 

The general results in this paper can be used a t  two quite different levels: 

fe-+..-- -f thn m a r L - A  T . r - : c a l  ,.C th:c 00,- ___.. ' thn La-+ Lar-nl -...h.lam l e m a  

2. [-function resummation 

&function resummation involves 'non-allowed' series commutation: a divergent series 
is commuted through a convergent summation. This may, in general, result in an  
unknown function being generated, whose determination is the main problem to be 
solved. We separate this unknown function { } into two parts, { },,+{ J c x ,  agreeing 
beforehand that { },, shall contain all power dependence o n  t (plus In t dependence 
when present), while { Jex contains all terms vanishing exponentially with 1. This 
separation is clearly unique and unambiguous within the elementary types o f t  depen- 
dence listed (these d o  suffice). We shall compute { J,, explicitly. Moreover, certain 
general properties of { will be established; e.g. this function is entire in s. The 
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calculated function {s, I > 0lp is meromorphic, and its poles precisely cancel the poles 
of the (meromorphic) power function Z (s, I > O )  in equation (1.4). As a result, 
F(s,  l > O )  is entire in s. For  the defining series ( l . l ) ,  the interpretation of this result 
is that the summand functionf(A,,t) disrupts the spectral sum I,,? sufficiently to prevent 
the poles of Z ( s )  from forming. However, these poles abruptly reappear in the limit 
l + O :  F(s,O) = f ( O ) Z ( s ) .  O n e  can turn the argument around, assume that F ( s ,  t>0) 
is an entire function of s, a n d  deduce from equation (1.4) the meromorphic structure 
^ P I ^  11 ""...a..*:---,l:"*L.~: ..._,. A.. ..s:.... A..",..>:":...:.. -*L"-..c--"-, --: __^_.^.. A 
U1 ,a, I lP, 'la I I I C I I I I U I I ~ "  111 L 1 1 G  I I ILIVY"C,,VII .  rrlraryLrLr,y 11, J L I~cIsIv,sp,dys a,, ,111 pulrdrrr 

role, and we begin with this aspect of the problem. 

2.1. Analyficity in the s-plane 

Often 6-functions are associated with positive operators A defined on some compact 
spacetime manifold d. Under rather general conditions (e.g. see [9]), the abscissa of 
absolute convergence in equation (1.3) is B = N / d ,  where d is the order of the operator 
A and  N is the dimension o f  spacetime .d. Continuation of Z ( s )  to the left of Re s = B 
shows that Z ( s )  is meromorphic, with a set of regularly spaced poles at points 
s = ( N  - k ) / d ,  k = 0, I ,  2, . . . along the real axis, ending a t  the rightmost pole at s = N /  d 
(which is always on the abscissa of convergence). Some, and perhaps infinitely many, 
of the pole residues may vanish. [-functions never have a pole at s = 0. 

The series (1.1) is the numerical series (1.3) which defines Z ( s ) ,  modified by having 
an extra factorf(A,r) inserted into the summand. Obviously, for t = O  this factor has 
no effect. However, as long as t > 0, so the summand factor f(A,,t)  depends non-trivially 
on the eigenvalues A,, this extra factor will disrupt the subtle and delicate process of 
pole formation in Z ( s ) .  There are many known explicit examples of this. 

One  example of the suppression of [-function pole formation is the exponential 
series 

F (  s, 1 )  = 1 A;: eCh,"i 
m 

which converges for Re  s > -m due  to the exponential damping of large eigenvalues. 
At f = 0 the abscissa of convergence jumps from Re s = --CO back to Re s = B, and the 
poles of Z ( s )  are restored. A different example is the Epstein function [IO] 

which defines an  entire function o f s  as long as not all the constants h,> ( a  = I ,  2 , .  . . , N )  
are integers. Here we see that pure phase factors are sufficiently disruptive to destroy 
6-function pole formation. For h, =integer for all a, F ( s ,  h,) becomes a [-function 
with a single pole at s = N-12 [ iu j .  But this pole is eliminated when even one of the 
constants h,, becomes non-integral. 

2.2. Series commutation 

(-function resummation applied to equation (1.1) means the following: 

F(s, i)=zAi, 'f(A,,,r) 
,n 
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where Z (s, I) is the series ( 1 . 5 )  and { ( 2 . 1 ) }  represents the function generated by 
commuting the summations Z, and Lx of the first equality. Let us postpone discussion 
of this function (i.e. of the series commutation problem) and first look at 2: (s, 1 ) .  

The coefficients in this series are, up  to elementary factors, just the [-functions 
Z ( s - a k - b ) .  It is important that, for the infinitely many terms having k >  
(Re s - B - b ) / a ,  Z ( s  - a k  - b )  is being evaluated to the left of its abscissa of conver- 
gence. Assuming for the moment that the point s - a k  - b is not a pole of the [-function 
for any k = 0, 1 , 2 , .  . . , it follows that every coefficient 

1 A;Tt"kth = Z ( s - a k - b )  (2.2) 
"l 

in equation ( 1 . 5 )  is finite. Analytic continuation is being used to assign, term by term, 
a unique finite value to the (divergent, for Re s < B + a k +  b )  series ( 2 . 2 ) .  Infinitely 
many divergent coefficients in the power series ( 1 . 5 )  are being simultaneously regular- 
ized in this way. The power series Z (s, 1 )  is amazingly easy to obtain by this method, 
and all complications reside in the 'extra term' as we shall call it- the a priori unknown 
function { ( 2 . 1 ) }  generated by series commutation. 

The extra term { ( 2 . 1 ) }  arises because a divergent sum (2, in equation ( 2 . 2 ) )  is 
being commutated through a convergent sum (&). Initially, all one can say is that an 
extra function probably is generated. The series commutation problem is to find out 
what this function is. One can soive this problem ai a quiie genetai lwei, up io 
exponentially small terms whose full evaluation remains a problem for future research. 
This is done by means of a Cauchy integral argument, initiated by Weldon [4] and 
improved by Elizalde and Romeo [7]. 

As previously mentioned, we divide the extra term { ( 2 . 1 ) }  generated by series 
commutation into two parts, 

{ (2 .1) )  ={(2 .1)1 ,+  { ( 2 . I ) l e x .  (2 .3)  

The subscripts p (and ex) refer to the power (and exponentially small) t-behaviour of 
these functions. Weldon's argument [4] gives us the power function { },, explicitly (see 
the appendix). As mentioned previously, this function { }p has poles in s which cancel 
all the s-poles of the power series Z (s, I )  in equation (1.4). Elizalde and Romeo [7] 
pointed out the existence of the additional term {lex i n  equation (2.31, but did not 
discuss this function's most inportant properties [ l ] :  { vanishes with f faster than 
any power of t, and is an entire function of s (see the appendix). The two terms 
on the right in equation (2 .3)  play clear and highly distinctive roles in the mathematics 
of [-function resummation. Only a full appreciation of these roles will enable one to 
understand the method in its entirety. 

Before writing down { },, we must introduce some notation. The poles of Z ( s )  are 
denoted by s = E - & ,  n = 0, 1 , 2 , .  . . with A , , = O  and positive pole spacings A,> fur 

Near these poles 

1 
Z ( B - A , ,  + E )  =- R,, + C,, + O ( E )  (2.4) 

E 

where R,  and C, are constants. 

that all poles cancel in equation (2.1) if 
Recalling that we have assumed C ( z )  to be regular for Re s >  -m, one readily sees 

( 2 . 5 a )  
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Here cosec a ( s -  B - b+A, ) / a  has poles at s = ap+ b t  B - A n ,  p =0,  * l ,  +2 , .  . , . Of 
these, the poles labelled by p = 0, 1 ,2 , .  . . cancel the poles in Z ( s  - a k  - b), k = 
0, 1,2,  . . . . There remain the poles in cosec labelled by p = -1, -2,. . . . These latter, 
at the points s = ap+ b+B-A, ,  are eliminated because the coefficients multiplying 
them are strictly zero: 

C ( l  (s- B -  b+A,)  

and  C(p )  =0 for p = -1, -2,. . . by assumption in equation (1.2). Therefore, the extra 
term ( 2 . 5 ~ )  has only the poles needed to cancel the i-function poles in equation (2.1), 
and  F(s,  f > 0) is indeed represented by this formula as being regular for Re s > -m. 
Equation (2.5a) is derived in the appendix by the Cauchy integral method for dealing 
with series commutation. 

Equations (2.1), (2.5a) are valid for all finites. For points s where pole cancellation 
is involved, the formula specifically implementing this pole cancellation should be 
given: 

a 
a 

{ ),,=I' (-f) cosec- (s - B -  b+A,)R, ,C (s - B - b+A,) 

where X'(X'') is a sum over all poles for which ( s - B -  b+A,,)/a is not (is) equal to 
any integer L=O, 1 , 2 , .  . . . When equation (2.5b) is used, the singular terms in the 
power series X (s, t) are of course omitted. Note that the extra term (2.56) contains 
In f dependence, whereas there are only powers of f in equation ( 2 . 5 ~ ) .  We see that 
In f terms occur only for special values of s, and can be regarded as belonging to (or 
at any rate as originating in) the power series itself. 

which is beyond 
power series form in f. A formal expression for this function is derived in the appendix: 

We proceed to the second term in equation (2.3)-the function { 

dkcosec  . irkC(k)f"hthZ(s-ak-b) (2.6) 
c 

where C is the counterclockwise semicircle drawn at infinity and bounding the right-half 
k-plane. The importance of this function in the series commutation problem was first 
pointed out by Elizalde and Romeo [7]. For C ( k )  vanishing reasonably rapidly as the 
contour C is approached, the integral (2.6) might be expected to vanish. However, it 
does not vanish in general, the reason being that the [-function Z(s-  a k -  6 )  diverges 
more rapidly than exponentially as  the contour C is approached. The parameter a > 0 
controls the rate of this divergence, and therefore plays a decisive role in determining 
whether { vanishes or not (see the appendix). The function (2.6) probably cannot 
be evaluated in terms of known functions. One ought not be surprised by this, 
considering the ease with which the other part-equation (2S-of the series commuta- 
tion problem has been solved. The  series rearrangement problem we are working on 
is truly non-trivial. Complications beyond those already surmounted are inevitable. 
These complications manifest themselves in the function (2.6) which contains the really 
deep mathematical complexity of this problem, and  is correspondingly difficult to 
evaluate. 
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Given the difficulty of computing the integral (2.6), it is very important that { } e y  

vanishes with 1, faster than any power of f [ I ] .  In the appendix we argue this can be  
interpreted to mean that { ),, vanishes as f + O  like O[exp(-A/ I ) ]  where A is some 
constant. This behaviour of { }ex means that, for small I, one can neglect { }ex relative 
to powers of f. What remains is an asymptotic series for F ( s ,  I>.) .  

We now write down our  final formula for F ( s ,  1): 

F ( s ,  f ) = ~ A , ' f ( A , , , f )  
m 

m 

= 1 ( - ) k C ( k ) t " k t h Z ( s - a k - b ) + { } , + {  lex (2.7) 

with { }p and given by equations ( 2 . 5 )  and (2 .6 )  respectively. This formula is 
understood to be exact if the power series converge. For small f one is free to disregard 
( },,, and then equation (2.7) becomes the asymptotic series 

k - 0  

m 

1 A i s f ( A m f ) -  1 ( - )kC(k)f"k 'hZ(s - a k -  b)+{  ),,. ( 2 . 8 )  

If one has computed the <-function Z ( s )  in terms of known functions, then every term 
on the right-hand side of this formula is known. 

There remains the question of the convergence of the power series in equation 
( 2 . 7 ) .  Actually, there are two power series to consider: the  (possibly finite) series (2.5a),  
and the infinite series ( I S ) .  To say much about the power series ( 2 . 5 a )  one needs the 
pole residues R, in equation (2.4). Lacking useful bounds on these numbers, one can 

specific to present here. The impression one  gains from such calculations is that the 
residues R, d o  not diverge strongly as n +CO, and convergence in equation (2.5a) is 
probably assured by the factor C [ ( s  - B - b + A , ) / a ] .  This point requires more study, 
however. 

We shall be somewhat more specific about the power series (l.S), whose convergence 
is far from being assured, because o f the  i-function factor Z(s - ak - b )  whose argument 
is going arbitrarily negative as k + m .  t-functions always blow up when this happens, 
as is briefly discussed in the appendix. If the other factor C ( k )  cannot tame the 
divergence of Z ( s -  ak - b )  for k - t m ,  then the series (1.5) will not converge for any 
f > 0. I n  practice, any of the following situations might be encountered: 

(i) C ( k ) + O  as  k+oo  sufficiently strongly that the series (1.5) converges for f <CO; 

(ii) C ( k ) Z ( s  - a k -  h )  + d k  with d =constant, and in this marginal case !he rerips 

( i i i )  C ( k )  fails to provide convergence for any 1 > 0 .  

m k - U  

ifivegig& Cxplici! c!aS&s of sppytya to gain insight of them. This is too inyo1ved 2nd 

(1.5) converges for df" < 1; 

Example. As an illustration we examine the power series 
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where ((s) is the Riemann I-function. The reflection formula (e.g. see [ I l l )  for 
[(s - ak - b )  has been used to exhibit the behaviour of [(s - ak - b )  as k + m in 
terms of more familiar functions. To leading order in k the summand above can be 
written as 

where (( 1 - s + a k +  6 )  = 1 is used for k + OD and finite s. The most important factor in 
the summand is clearly 

When c < a,  this factor diverges more strongly than exponentially, and the power series 
diverges for r > O  (case (iii)). The  case c =  a is marginal, with asymptotic summand 

so the power series converges for f sufficiently small (case (ii)). Finally, for c >  a the 
factor r ( a k ) / r ( c k )  provides convergence stronger than exponential, so the power 
series converges for O s t < m  (case (i)). Other examples with similar features could 
be given. 

2.3. A series commutation problem with no extrn term 

The series commutation problem of section 2.2 will be contrasted here with a different 
problem in which series commutation is permissible, which means by definition that 
the extra term vanishes identically. 

In equation ( l . l ) ,  rather than the summand function (1.2) let us use instead 

where convergence is assumed for the real variable x >  x". Then, with a slight change 
in notation, 

G(s ,  t )  = E  A;'g(A,,,f) f > X o I A  I 
I,, 

Res> B 
I" A = O  

w 

= b , / - ' Z ( s + k )  all s (2.10) 
h - U  

where A ,  is the smallest eigenvalue of the spectrum. In the final line we have used 

Z(s+k)=l:A,'-A Re(s+ k ) >  E (2.11) 
"2 

to evaluate X,,, for R e s >  E -  k. Then, by <-function regularization, the final line in 
equation (2.10) is valid for al l  s. Because the convergent (for Re s > E -  k j  sum (2.11) 
is commuted through the convergent sum X h ,  no extra term is generated. 
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The absence of an extra term in equation (2.10) is directly connected with analytic 
behaviour in s of the function G(s ,  I ) .  For large eigenvalues A, + m and I > 0, the 
summand function g(A,r)  has no disordering effect because 

g(A,I) + bo = constant A., + m 

Consequently, formation of the poles of the [-function Z ( s )  does occur. Indeed, due  
to the presence of the parameter 1, a pole structure more complicated than that of 
Z ( s )  comes into existence, and this is explicitly revealed by equation (2.10). There is 
no  extra term { },, needed to cancel the poles of Z ( s + k )  in equation (2.10), and  
appropriately { lP-0  in this formula. 

The absence of the other part { }ex of the extra term (2.3) can also be understood 
quite easily. The Cauchy integral argument in the appendix leads to a formula much 
like equation (2.6) for { },,, with Z ( s + k )  in place of Z ( s - a k - b ) .  Now one of the 
important things to know about i-functions is that they are very tame far to the right 
in their complex plane. Indeed, for Re k >> /Re  SI ,  the series definition (1.3) of a general 
[-function becomes 

Z ( s +  k )  = A;'-' [ 1 + (:)*" +. . . ] 
=A;'-' +small corrections (2.12) 

where the smallest eigenvalue A , ,  the next smallest A > .  etc., are assumed non-degenerate 
for simplicity. A technical point concerning i-functions which we can safely ignore 
everywhere else in this paper is this: when the eigenvalues A,, have physical dimension, 
it is necessary to employ modified eigenvalues A , / p  scaled by  a real dimensional 
constant having the same dimensions as A, .  Then the right-hand side of equation 
(2.12) reads ( A , / p ) - ' - ' + .  . . where p will determine the numerical value of the ratio 
A , / p ,  Should this ratio be  < l ,  the right-hand side of equation (2.12) is vanishingly 
small. Even if A , / p >  1, there is only a power divergence in equations (2.12) for 
Re k + m. The [-function Z ( s  - ak - b )  blows up as Re k + m far more rapidly than 
this, overwhelming the other integrand factor C ( k )  in equation (2.6) and  causing { }?" 
to be non-zero in general. But here, with Z ( s  + k )  either converging or diverging weakly 
a t  worst, the other integrand factor C ( k )  will overwhelm Z ( s  + k )  and { }ex will vanish. 

Equation (2.12) also makes the convergence of the power series (2.10) a trivial 
matter to settle. For large real k >> IRe 51, the summand in equation (2.10) becomes 
A;'bk(fA,)-k,  and by assumption the series (2.10) converges for I A ,  > x<,. 

The difference between the functions (2.10) and (2.7)-i.e. between the two series 
commutation problems-is illustrated by 

(2.13) 

(2.14) 



3750 A Actor 

F ( s ,  x > 0) is an  entire function of s. G(s ,  x> 0) has poles at s = 1 - k = 1,0, -1, -2, .  , . 
with residues ( - x ) ' / k ! .  The power series (2.13) converges for x < m  o r  i =  I/x>o, 
because [( s + k )  = 1 +. . . for real k >> IRe S I .  The convergence of the power series (2.14) 
was discussed in section 2.2 above. 

3. [-function resummation as a divergent series summation prescription 

Divergent series may be capable of defining functions. What a divergent series lacks 
is a convincing regularization prescription which extracts the (finite, well-defined) 
function from its divergent series. One can hardly expect to succeed in finding such a 
regularization for all divergent series. However, in many cases a satisfactory result can 
be achieved. One familiar example is [-function regularization, which assigns the finite 
value -Z'(O) [12], with Z ( s )  as in equation (l .3),  to divergent series of the form 
Xm In A,. Mathematicians have devised a substantial body of regularization methods, 
applicable to quite a range of divergent series types. The reader wishing to become 
familiar with traditional divergent-series summation methods is advised to consult 
Hardy's classic text [SI, both for technical content and for a sense of the various 
attitudes taken toward this subject. 

Our  point in this section will be that [-function resummation can be  applied to 
divergent series of the form (1.1) just as readily and unambiguously as it can to 
convergent series. If the series (1.1) is divergent, then [-function resummation will 
reorganize it into a power series in f plus an  exponentially small correction. The power 
series is asymptotic and  may diverge-but such a power series divergence is far milder 
than the divergences one typically begins with. One  might speak of 'near regularization' 
in such cases. The asymptotic series may of course be convergent. Then, one has 
(modulo the exponentially small term) achieved the complete and  unambiguous regu- 
larization of the original divergent series. Divergent series which can be dealt with by 
such methods might well be called 'i-function summable'. 

For the sake of clarity we introduce a minor change in notation. Rather than talking 
about the series (1.1) let us discuss instead 

F ( s ,  t ) = x A ; ' f ( A m f )  (3.1) 
0 1  

where 

and C ( k )  is non-alternating in sign as before. All we have done is suppress the 
alternating sign in equation (1.2). this being strongly correlated with the convergence 
of the original series (1.1) as illustrated by 

f ( s ,  + [ ) = E  A , '  e*',," f > O  
111 

(3.3) 

For + (-) we have exponential divergence (convergence) of the left-hand series, and 
non-alternating (alternating) sign in k on the right. Many other examples of the same 
correlation could be given. We choose equations (3.l), (3.2) as represenfafive of 
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divergent series i(s, f )  just as equations (1.11, (1.2) are representative of convergent 
series F(s, 1 ) .  

The derivation of equation (2 .7)  can now be  repeated step by step, wth the result 

p ( s ,  t ) = ~ A , ' f ( h , f )  
m 

cc 

= 1 C ( k ) r " " ' Z ( s - a k - b ) + {  } , ,+ { )ex  (3 .4 )  
I = "  

where 1 ),, and 1 )cx  are given by equations (2.5) and (2.6) with the simple change 
cosec z +  cot z. In equation (2 .56 )  the factor ( - ) L  is deleted under the sum E'' as well. 
The linkage of (-)' with cosec m and (+)' with cot ~ i z  is elementary a n d  fully discussed 
in [ 4 ,  5 ,  71. Equation (3 .4 )  is, then, the value assigned by [-function regularization to 
the divergent series p(s, f ) .  { } c x  is exponentially small for small 1, and disregarding 
this contribution, equation (3 .4 )  becomes an  asymptotic series for p(s ,  t ) .  The conver- 
gence or  divergence of this asymptotic series can be investigated much as for the series 
(2 .7) ,  and no more will be said about this. 

Example. In [ 5 ]  a number of examples of equation (3 .4)  were given in which A, = 
am + b is a linear function of m = 1 , 2 , .  . . andf(z)  is cosh z, sinh z or  the corresponding 
Bessel functions r u ( z ) ,  L,,(z). One does not find such formulae, even in the largest 
collections of results on infinite series, the reason being of conrse that identities and 
not definitions belong in such collections. Let us consider here the series 

m 

F(s ,  t ) =  1 m-' en'' i > O  
m = ,  

Here { )ex = 0. To gain some insight into why, let us set x = 0 in equation ( 3 . 5 ) :  
m 

F ( o ,  t )  = 1 en" 
m = ,  

The final line may be compared with 

which is the 'natural' value to assign to the left-hand series (e.g. see [SI). Recalling that 

is the generating function of the Bernoulli numbers B,, we see that equations (3 .6)  
and (3 .7)  are identical. Equation ( 3 . 5 )  is therefore the natural value to assign the 
divergent series p ( s ,  t )  in the same sense that equation (3 .7 )  is a natural definition. 
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4. Exponential series 

Exponential series have particular importance, and this section will be devoted entirely 
to them. Known results on the heat kernel expansion will be compared with the general 
formulae derived in section 2, and complete agreement is found. This serves to confirm 
the exponential vanishing of {lex by a familiar and independent argument, and to 
draw attention to the geometrical significance of the [-function Z ( s ) .  

4.1. General formulae 

For exponential series, one readily obtains, from the results of section 2 ,  

f ( s ,  i )=z  A-' m e-",,' 
"l 

1 m 

= h=0 z ( - t j *k !Z(s-k)+{}p+{} , ,  (4.1) 

(4.2) { )p = 1 t'-'J+" , * R , T ( - s + B - A , )  

1 {}..=GI C d k  r ( - k j t ' Z ( s - k ) .  (4.3) 

To find these expressions we have used the identity -T cosec 7ik = r ( - k ) T ( I  + k ) .  Pole 
cancellation occurs at points satisfying s - B + A,, = L = 0, 1 , 2 ,  . . . and at these points 
one omits all singular terms from E h  in equation (4.11, and replaces equation (4.2) by 

I L  
{ }p = 1' t ' - B + A , ,  R , r ( - s  + B - A n  j +r (-j'- [ R , ( H L -  y - In 1 )  + C,,] (4.41 L! 

where Y is over all poles for which s - B + A, = L = 0, 1 ,2 , .  . . . The constant H ,  = 
1 +1/2+ 1/3+. . .+ 1/L comes from 

r ( - L +  E )  = 

4.2. Heat kernel expansion 

Consider an elliptic operator A defined on a compact manifold N and having spectrum 
{A,,,]. Aside from depending on A, this spectrum also contains very detailed information 
about the spacetime manifold At, How might one extract this information from the 
spectrum? The standard procedure is based on the asymptotic expansion (e.g. see [9]) 

where N is the dimension of N and d is the order of the operator A (i.e. the mass 
dimension of the eigenvalues A m ) ,  The coefficients a ,  in equation (4.5)-often called 
the 'spectral invariants'-each contain a particular piece of  geometrical information 
about the manifold N, Usually A is chosen to be the Laplacian, and then a ,  is 
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proportional to the volume of A, a ,  is proportional to the boundary surface of A, and 
so on. The famous spectral geometry problem (e.g. see [13, 141) is to determine 
how much of the geometry of dd can be  extracted from the spectrum { A m }  via the 
coefficients a,,. 

Equations (4.1)-(4.4) with s = 0  give the coefficients a.  in terms of the [-function 
Z ( s ) .  These results have been known for a long time. Let us recall the standard 
approach to this problem (e.g. see [9]) which begins with the formula 

r(s)z(s)=r(s)x A , '  
m 

(4.6) 

where r ( s )  is the remaining integral over 1 =s IS m. Since only positive eigenvalues are 
included in equation (4.6), r ( s )  is clearly non-singular throughout the finite s-plane. 
However, using equation (4.5) we find that the other part does have poles (remember, 
integration of asymptotic series is allowed): 

a n / ( n - N 1 / d  
I, = ,> 

L N - L  
d (4.7) 

a, Res>- = I  
n=O s + ( n  - N ) / d  

where the integer L z O  is as large as desired. Equation (4.7) shows that I'(s)Z(s) in  
equation (4.6) can be continued to the left of R e s  = B as far as desired, and only 
simple poles will be found, these being on the real axis at the evenly spaced points 

s =  ( N - n ) / d  n = 0 , 1 , 2  , . . . .  (4.8) 

This argument identifies the a, as residues of the poles of r ( s ) Z ( s ) .  If none of the 
points (4.8) coincide with the non-positive integers, then r(s) is finite at these points, 
and each of them is a pole of Z ( s ) :  

+finite n = 0 , 1 , 2 ,  ... Z(?+.) N - n  =- 1 0. 

E r [ ( N - n ) / d l  

N - n  
d -#O,-1,-2 , . . . .  (4.9) 

However, if ( N  - n ) / d  = - p  where p = 0, 1 , 2 , ,  , , , then r(s) has a pole at this point, 
and Z ( s )  is finite there. This yields the special values 

Z ( - p ) = ( - ) " p ! a ~ + ~ , ~  p = 0 ,  1 , 2  ,... . (4.10) 

Equations (4.9) and (4.10) are important general statements. First, the poles of 
z ( s )  are specified, and the residues of these poles given in terms of the spectral 
invariants a t z .  Second, in appropriate cases, special values of Z ( s )  are obtained in 
terms of the a,. 
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Let us compare the results just found with equations (4,1)-(4.3). Fors =0, equation 
(4.1) becomes 

+ {  }*" p = o , 1 , 2  , _ _ . .  (4.11) 
Comparison of equations (4.11) and (4.5) yields R,I'[(N - n ) / d ]  = a,, for n # N + d p ,  
p = O ,  1 , 2  , . . .  whichi~equation(4.9);and(-)~Z(-k)/k!=a~,,,,,p=O, 1,2 ,... which 
is equation (4.10). 

We have reviewed such well-known material to make several points. 
First, that the Mellin transform (4.6) plays quite an essential role in this standard 

derivation. As a rule, for summand functions f in equation (1.1) other than the 
exponential, one does not have the luxury of such a formula. Our more general 
procedure in section 2 (which may be regarded as the inverse of the calculation 
(4.6)-(4.10)) does not favour any particular summand function, and works equally 
well for all of them. 

The second point is that, according to the standard spectral geometry analysis based 
on equation (4.9, ( in equation (4.3) does have the property we claim for this 
function in general, of being a function of / beyond power series form. 

Third, the exponential series or  heat kernel function (4.5) is well suited for the 
spectral geometry programme, but other series could also be used for the same purpose. 
The really fundamental function in the entire analysis is not the heat kernel, but rather 
the [-function Z ( s )  defined by equation (1.3). It is Z ( s )  which contains in purest form 
the geometrical information about the spacetime manifold one is attempting to extract. 
In  the expansion (4.5) this information passes from Z ( s )  into the spectral invariants 
a, via the relations (4.9), (4.10). Equation (2.7) does the same thing as efficiently for 
other summand functions f ( A m f ) .  It seems, therefore, that in the problem of spectral 
geometry the traditional focus may be slightly off centre. One may as well study Z ( s )  
directly, without recourse to the heat kernel series (4.9, or to any other special case 
of equation (2.7). 

5. q-function resummation 

Given a spectrum {A,,,} having both positive and negative eigenvalues, with A," increas- 
ing without limit and sufficiently rapidly in either direction, one can construct from 
this spectrum an 7-function: 

H ( s ) = Z  (sgn A m ) l L - '  R e s > B ' .  (5.1) 
111 

Such functions are related to I-functions, but are potentially more complicated than 
the latter (e.g. see [ 9 ] ) .  H ( s )  has an abscissa of absolute convergence R e s  = B ' a O ;  a 
meromorphic continuation to the left of this abscissa; possible poles along the real 
axis for s S B'; and no pole at s = 0. H ( s )  possibly has no poles at all for Re s > -W. 

This is the case for the simplest [-functions: 
'e 

v ( s ) =  1 ( - ) " ' + ' m - ' = [ l - 2 ' - ' ] i ( s )  (5.2) 

P ( s ) -  1 ( - ) " ( 2 n + l ) - ' .  (5.3) 

m = ,  

m 

" = U  
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A general 7-function (5.1) can be used to reorganize convergent series just as a 
5-function can: 

G(s ,  t ) = X  (sgn L,) IL-Y( lAmIt)  
m 

m 

= 1 ( - )kC(k) t 'h 'hH(s  - a k -  b ) + {  lo+{ } c x  (5.4) 
h = O  

where f(z) is the function (1.2) and all steps are essentially the same as in section 2. 
The power function { I,, is given by a formula like equation (2 .5) ,  and for the same 
reasons. If H ( s )  is an  entire function then { }p = 0. { }ex is given by a formula like 
equation (2.6), and is exponentially small for I +  0. Discarding { } c x  in equation (5.4) 
leaves an asymptotic series representation for G(s ,  t ) .  

Divergent series can also be reorganized with the help of 7-functions. A simple 
example is 

which should be compared with equation (3.5). The parallel between (-function 
resummation and 7-function resummation is so close that it is hardly necessary to say 
more. 
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Appendix 

For completeness, this appendix gives the Cauchy integral derivation of equation (2.7). 
This argument was formulated originally by Weldon [4], who derived in a simpler 
context the extra term ( },,, but failed to notice the other function { Icy generated by 
series commutation. The need for something beyond { }p was observed by the author 
[5]. However, it was Elizalde and Romeo [7] who first noticed { } e x .  This appendix 
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extends the  analysis of [4, 71 to a general spectrum, which is straightforward. Then, 
we concentrate on the exponentially small function {),,, explaining why it has this 
behaviour in I, why it  is an entire function of s, and so on. Previously these questions 
have been addressed only in the simpler context of [I] .  

Series commutation problem 

Le! cs recocsider !he se:ies coxm.;ta:ioo p:ob!em iii eqiiatioii (2.:): 

F(s ,  t )  = E A;'f(Amt) 
m 

-- - dkcosec  rrkC(k)rakthZ(s-ak-b)  
;i J-?+Gm 
+r(s, t )  Re s >  B+ b+ E (A51 
!I- 

+{ )ex+r(s, t )  Re s >  B+ b +  E. (A61 

One more step remains to be  taken; but let us first explain the steps (AI)-(A6). In 
equation (A2), the contour H is a counterclockwise hairpin enclosing the positive real 
k - a x k  We a s s ~ m e  that C ( k )  has no singu!arities fer Re k > -W. Thus In eqGition 
(A2) the contour H can be expanded until it becomes the perimeter D of an  infinite 
half-disc, whose flat side is R e s  = -&(&a O), enclosing the right half-plane in the 
counterclockwise sense. In equation (A4) the integral around D is separated into 
the integral along the flat side, and  the integral around the infinite semicircle C of 
contour D: 

- _  d k  cosec rrkC(k)r""'Z(s-ak-b) 
-2i Yo 

r(s, t ) = x  A;,\ - dk  cosec ~ k C ( k ) ( ~ , , , t ) " " ' .  (A71 

We shall assume that r(s, t )  vanishes identically, and  this is a fairly weak assumption 
given reasonable convergence properties of the series (1.2). In equation (A5) the 
condition R e s >  B + ~ + E  is maintained to keep convergent, so that X,!, and 
the integration along the flat side of contour D can be commuted. In equation (A61 
the contour D is reclosed by adding and  subtracting the contribution from the infinite 
semicircle C of the half-disc perimeter D. Thus we arrive at the formal expression 

,,, 2 i c  ' I  

(A81 1 
{ )ex  = -- 2i (. 

d k  cosec rrkC(k)t""'Z(s - ak - b ) .  
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The final step is to shrink the half-disc perimeter D in equation (A6) back to the 
hairpin contour H enclosing the positive real k-axis, and then re-express the integral 
around H as a discrete sum: 

F(s,  1 )  = E  Ai'f(A,t)  
m 

m 

= ( - ) k C ( k ) f " k t h Z ( s - a k - b ) + {  }p+{]cx  (A9) 
k = "  

where { } e x  is given by equation (AS). It remains to evaluate the power series extra 
term { Ip, and this is easy. Weldon [4] noted that, when shrinking D back to H in 
equation (A6), any poles of Z ( s - a k -  b )  within D have to be taken into account. It 
is easy to see that all of the poles of this [-function lie within D and therefore contribute, 
and altogether the contribution from all of these poles is precisely the function ( 2 . 5 ~ ) .  
Remember that Re s > B + b + E is still in force in equation (A6). The poles of Z(s  - ak - 
b) are located at s - ak - b = B - A m ,  n =0, 1,2, .  . . (see section 2.1) where A, gives 
the separations between adjacent poles. Thus in the k-plane, the poles k =  
(s- B-b+A,) /a  all lie within D. Denoting the pole residues by R,, 

1 
Z ( B - A , + E ) = - R , + C , + O ( E )  (A101 

the contribution from the poles in Z ( s - a k - b )  when going from equation (A6) to 
equation (A9) is, for (s- B-b+A,) /a  f 0, 1,2, .  . ., precisely { I p  in equation (2.5a). 
We assume that C(z) is regular for R e s >  -m. This permits us to now relax the 
condition R e s >  B +  b + ~ ,  and continue the function (2.50) throughout the s-plane. 
I thasbeenassumedthat ( s - B - b + A , , ) / a # 0 , 1 , 2 ,  . . .  tokeepthepolesofZ(s-ak-  
b) apart from the poles of cosec rrk. If (s - B - 6 + A,)/a = L = 0 , 1 , 2 ,  . . . for one or  
more poles of Z(s - ak - b), then these poles sit atop poles of cosec rrk, and for ( },, 
one obtains precisely the function (2.56). 

E 

Comments on { 

In the final result (A9), all terms on the right are known except for {ley. The real 
complications of the series communication problem reside in this function, whose 
computation even in simple cases presents an extremely challenging problem. There 
are, however, some general statements which can be made about this function. 

Dependence on r. Observe that {Icx in equation (A81 vanishes as f +O, faster than any 
power of t. This is evident from the contour integral whose integrand is proportional 
to an infinite power of t along the entire contour C excepting the endpoints. In  the 
class of series studied in [ I ] ,  having A,, = m", n = 1,2,3, . . . . and a > 0, it was seen 
that 'vanishes faster than any power of 1' means exponential behaviour exp(-const/!). 
This is not yet proven in general for an arbitrary spectrum. However, it is probably 
true that, for an arbitrary spectrum, the function (AS) does vanish exponentially in  
the same way. We have no space here to fully discuss this. Let it suffice to say that if 
the high eigenvalues A,, with m + m  have the leading behaviour A,,, =a,,m"+smaller 
terms, then to leading order the same situation found in [ I ]  will be reached. This 
comment can be expected into a substantial argument, if not a general proof. 
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Dependence on s. If the left-hand side of equation (A9) is an  entire function of s, and 
on the right the term {I,, cancels all (-function poles in the power series preceeding 
it, then must also be an  entire function of s. To what extent does equation (A8) 
agree with this? Suppose the <-function Z ( s - a k -  b )  has only finitely many poles, a t  

n=O, 1,2, .  . . . , N. ( A l l )  
These equations map the k-plane contour C in equation (A8) into a set of similar 
half-circle contours C,; n = 0; 1: 2; .  . . N in the s-plane. However, all of!here r-p!ane 
contours C, lie beyond finite s, a t  infinity. Thus, given the function (A8) is well defined, 
it will be entire in the s-plane, but singular along the curve at infinity Is1 =a, larg 
71/2. As N grows arbitrarily large this situation persists: for any finite A, no matter 
how large, the s-plane contours C, crowd together a t  infinity. 

Dependence on parameter a. What will be described here is an (unproven) apparent 
scenario based on a number of examples. It is certainly true that Z ( s  - a k -  b )  blows 
up on the contour C in equation (A8). Our conjecture is that this occurs in such a 
way as to ensure the existence o f  a critical value a,  of parameter a for which 

s = a k i  b+ B - A,p 

{L,=O O < a < a ,  
f O  a 2 a,  

a possibility first pointed out by Eiizaide and Romeo [ i j  in their work on series 
commutation in a specific example. In general, it is the blow u p  of Z ( s  ~ ak - b )  on 
contour C that enables { } e x  to be non-vanishing. The rate a t  which Z ( s - a k -  b )  
becomes infinite as this contour is approached is controlled by the positive parameter 
a. However, if we allow this parameter to decrease to a =0, the &function no longer 
blows up on contour C, and { lex vanishes. Thus it seems inevitable that a critical value 

detail. However, a few remarks may be  justified. 
Any analysis of this question will be based on the rate a t  which Z ( s - a k -  b )  

diverges as Re k -f CO. All (-functions grow without bound far to the left in their complex 
plane. Analytic continuation of the defining series (1.3) is, of course, needed to reveal 
this. For the Riemann (-function ((s), the reflection formulation (see [ l l j  performs 

i LuII,III"aLL"II "cry  cAp""1Lly. ru, drly 111"1S LurIrprrLarru ?%,,U IC>> IUIIUII- 

mental (-function, there does not exist such a formula. This is a great hindrance in 
many ways. In [ l ]  we were above to make useful progress on understanding {lex for 
the class of series studied there (e.g. showing exponential vanishing as r + 0) precisely 
because the Riemann (-function was involved. Lacking such a convenient analytic 
continuation in the general case, one can at least examine some general classes of 

A m  = m"l i p Z m c ' J i P , m " ' + .  , . a ,>a ,>a , i .  . . (A12) 

where at least e, >O. The upper end of the spectrum is dominated by A,,, = m " , + .  . . 
for m --f m, and Z (  s )  = (( a, s) +. . , where the corrections are proportional to (-functions 
such as <[a , s+  n ( a ,  - a 2 ) ] ,  n = I ,  2 , .  . , evaluated further to the right in the complex 
plane. Consequently, Z ( s )  is dominated by c ( a , s )  for R e s +  -02. Then one can use 
the reflection formula for ( [ a , ( s  - ak - b ) ]  to find the leading behaviour of Z ( s  - ak - 
b )  as Re k - f - m ,  precisely as was done in [l]. In this fashion one recovers the 
exponential vanishing of { }ex with r, and other general features of the analysis in  [ I ] ,  
including the existence of the critical parameter ac> 0. We plan to amplify these brief 
remarks elsewhere. 

0 fiillsi exist Bs described above, Again \ve have ria Spai.r io discuss this in any  
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